Classical Information Storage in an n-Level Quantum System
نویسندگان
چکیده
منابع مشابه
Classical information storage in an $n$-level quantum system
A game is played by a team of two — say Alice and Bob — in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x b...
متن کاملStorage of classical information in quantum spins.
Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and backaction of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملQuantum Theory and Classical Information
Transmission of classical information using quantum objects such as polarized photons is studied. The classical (Shannon) channel capacity and its relation to quantum (von Neumann) channel capacity is investigated for various receiver arrangements. A quantum channel with transmission impairment caused by attenuation and random polarization noise is considered. It is shown that the maximal (von ...
متن کاملQuantum contextuality in classical information retrieval
Document ranking based on probabilistic evaluations of relevance is known to exhibit non-classical correlations, which may be explained by admitting a complex structure of the event space, namely, by assuming the events to emerge from multiple sample spaces. The structure of event space formed by overlapping sample spaces is known in quantum mechanics, they may exhibit some counter-intuitive fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2015
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-015-2463-0